Sunday, February 26, 2012
A New View of an Icon
The Eagle Nebula as never seen before. In 1995, the Hubble Space Telescope's 'Pillars of Creation' image of the Eagle Nebula became one of the most iconic images of the 20th century. Now, two of ESA's orbiting observatories have shed new light on this enigmatic star-forming region.
The Eagle Nebula is 6500 light-years away in the constellation of Serpens. It contains a young hot star cluster, NGC6611, visible with modest back-garden telescopes, that is sculpting and illuminating the surrounding gas and dust, resulting in a huge hollowed-out cavity and pillars, each several light-years long.
The Hubble image hinted at new stars being born within the pillars, deeply inside small clumps known as 'evaporating gaseous globules' or EGGs. Owing to obscuring dust, Hubble's visible light picture was unable to see inside and prove that young stars were indeed forming.
The ESA Herschel Space Observatory's new image shows the pillars and the wide field of gas and dust around them. Captured in far-infrared wavelengths, the image allows astronomers to see inside the pillars and structures in the region.
In parallel, a new multi-energy X-ray image from ESA's XMM-Newton telescope shows those hot young stars responsible for carving the pillars.
Wednesday, November 2, 2011
Herschel Finds Oceans of Water in Disk of Nearby Star
Using data from the Herschel Space Observatory, astronomers have detected for the first time cold water vapor enveloping a dusty disk around a young star. The findings suggest that this disk, which is poised to develop into a solar system, contains great quantities of water, suggesting that water-covered planets like Earth may be common in the universe. Herschel is a European Space Agency mission with important NASA contributions.
Scientists previously found warm water vapor in planet-forming disks close to a central star. Evidence for vast quantities of water extending out into the cooler, far reaches of disks where comets take shape had not been seen until now. The more water available in disks for icy comets to form, the greater the chances that large amounts eventually will reach new planets through impacts.
"Our observations of this cold vapor indicate enough water exists in the disk to fill thousands of Earth oceans," said astronomer Michiel Hogerheijde of Leiden Observatory in The Netherlands. Hogerheijde is the lead author of a paper describing these findings in the Oct. 21 issue of the journal Science.
The star with this waterlogged disk, called TW Hydrae, is 10 million years old and located about 175 light-years away from Earth, in the constellation Hydra. The frigid, watery haze detected by Hogerheijde and his team is thought to originate from ice-coated grains of dust near the disk's surface. Ultraviolet light from the star causes some water molecules to break free of this ice, creating a thin layer of gas with a light signature detected by Herschel's Heterodyne Instrument for the Far-Infrared, or HIFI.
"These are the most sensitive HIFI observations to date," said Paul Goldsmith, NASA project scientist for the Herschel Space Observatory at the agency's Jet Propulsion Laboratory in Pasadena, Calif. "It is a testament to the instrument builders that such weak signals can be detected."
TW Hydrae is an orange dwarf star, somewhat smaller and cooler than our yellow-white sun. The giant disk of material that encircles the star has a size nearly 200 times the distance between Earth and the sun. Over the next few million years, astronomers believe matter within the disk will collide and grow into planets, asteroids and other cosmic bodies. Dust and ice particles will assemble as comets.
As the new solar system evolves, icy comets are likely to deposit much of the water they contain on freshly created worlds through impacts, giving rise to oceans. Astronomers believe TW Hydrae and its icy disk may be representative of many other young star systems, providing new insights on how planets with abundant water could form throughout the universe.
Sunday, September 25, 2011
Our Galaxy Might Hold Thousands of Ticking "Time Bombs"
Cambridge, MA - In the Hollywood blockbuster "Speed," a bomb on a bus is rigged to blow up if the bus slows down below 50 miles per hour. The premise - slow down and you explode - makes for a great action movie plot, and also happens to have a cosmic equivalent.
New research shows that some old stars might be held up by their rapid spins, and when they slow down, they explode as supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy.
"We haven't found one of these 'time bomb' stars yet in the Milky Way, but this research suggests that we've been looking for the wrong signs. Our work points to a new way of searching for supernova precursors," said astrophysicist Rosanne Di Stefano of the Harvard-Smithsonian Center for Astrophysics (CfA).
The specific type of stellar explosion Di Stefano and her colleagues studied is called a Type Ia supernova. It occurs when an old, compact star known as a white dwarf destabilizes.
A white dwarf is a stellar remnant that has ceased nuclear fusion. It typically can weigh up to 1.4 times as much as our Sun - a figure called the Chandrasekhar mass after the astronomer who first calculated it. Any heavier, and gravity overwhelms the forces supporting the white dwarf, compacting it and igniting runaway nuclear fusion that blows the star apart.
There are two possible ways for a white dwarf to exceed the Chandrasekhar mass and explode as a Type Ia supernova. It can accrete gas from a donor star, or two white dwarfs can collide. Most astronomers favor the first scenario as the more likely explanation. But we would expect to see certain signs if the theory is correct, and we don't for most Type Ia supernovae.
For example, we should detect small amounts of hydrogen and helium gas near the explosion, but we don't. That gas would come from matter that wasn't accreted by the white dwarf, or from the disruption of the companion star in the explosion. Astronomers also have looked for the donor star after the supernova faded from sight, without success.
Di Stefano and her colleagues suggest that white dwarf spin might solve this puzzle. A spin-up/spin-down process would introduce a long delay between the time of accretion and the explosion. As a white dwarf gains mass, it also gains angular momentum, which speeds up its spin. If the white dwarf rotates fast enough, its spin can help support it, allowing it to cross the 1.4-solar-mass barrier and become a super-Chandrasekhar-mass star.
Once accretion stops, the white dwarf will gradually slow down. Eventually, the spin isn't enough to counteract gravity, leading to a Type Ia supernova.
"Our work is new because we show that spin-up and spin-down of the white dwarf have important consequences. Astronomers therefore must take angular momentum of accreting white dwarfs seriously, even though it's very difficult science," explained Di Stefano.
The spin-down process could produce a time delay of up to a billion years between the end of accretion and the supernova explosion. This would allow the companion star to age and evolve into a second white dwarf, and any surrounding material to dissipate.
In our Galaxy, scientists estimate that there are three Type Ia supernovae every thousand years. If a typical super-Chandrasekhar-mass white dwarf takes millions of years to spin down and explode, then calculations suggest that there should be dozens of pre-explosion systems within a few thousand light-years of Earth.
Those supernova precursors will be difficult to detect. However, upcoming wide-field surveys conducted at facilities like Pan-STARRS and the Large Synoptic Survey Telescope should be able to spot them.
"We don't know of any super-Chandrasekhar-mass white dwarfs in the Milky Way yet, but we're looking forward to hunting them out," said co-author Rasmus Voss of Radboud University Nijmegen, The Netherlands.
Saturday, August 13, 2011
VISTA Finds 96 Star Clusters Hidden Behind Dust
Click to Enlarge
Using data from the VISTA infrared survey telescope at ESO’s Paranal Observatory, an international team of astronomers has discovered 96 new open star clusters hidden by the dust in the Milky Way. These tiny and faint objects were invisible to previous surveys, but they could not escape the sensitive infrared detectors of the world’s largest survey telescope, which can peer through the dust. This is the first time so many faint and small clusters have been found at once.
This result comes just one year after the start of the VISTA Variables in the Via Lactea programme (VVV) [1], one of the six public surveys on the new telescope. The results will appear in the journal Astronomy & Astrophysics.
“This discovery highlights the potential of VISTA and the VVV survey for finding star clusters, especially those hiding in dusty star-forming regions in the Milky Way’s disc. VVV goes much deeper than other surveys,” says Jura Borissova, lead author of the study.
The majority of stars with more than half of the mass of our Sun form in groups, called open clusters. These clusters are the building blocks of galaxies and vital for the formation and evolution of galaxies such as our own. However, stellar clusters form in very dusty regions that diffuse and absorb most of the visible light that the young stars emit, making them invisible to most sky surveys, but not to the 4.1-m infrared VISTA telescope.
“In order to trace the youngest star cluster formation we concentrated our search towards known star-forming areas. In regions that looked empty in previous visible-light surveys, the sensitive VISTA infrared detectors uncovered many new objects,” adds Dante Minniti, lead scientist of the VVV survey.
By using carefully tuned computer software, the team was able to remove the foreground stars appearing in front of each cluster in order to count the genuine cluster members. Afterwards, they made visual inspections of the images to measure the cluster sizes, and for the more populous clusters they made other measurements such as distance, age, and the amount of reddening of their starlight caused by interstellar dust between them and us.
“We found that most of the clusters are very small and only have about 10–20 stars. Compared to typical open clusters, these are very faint and compact objects — the dust in front of these clusters makes them appear 10 000 to 100 million times fainter in visible light. It’s no wonder they were hidden,” explains Radostin Kurtev, another member of the team.
Since antiquity only 2500 open clusters have been found in the Milky Way, but astronomers estimate there might be as many as 30 000 still hiding behind the dust and gas. While bright and large open clusters are easily spotted, this is the first time that so many faint and small clusters have been found at once.
Furthermore, these new 96 open clusters could be only the tip of the iceberg. “We’ve just started to use more sophisticated automatic software to search for less concentrated and older clusters. I am confident that many more are coming soon,” adds Borissova.
Saturday, July 30, 2011
Astronomers Find Largest, Most Distant Reservoir of Water
Two teams of astronomers have discovered the largest and farthest reservoir of water ever detected in the universe. The water, equivalent to 140 trillion times all the water in the world's ocean, surrounds a huge, feeding black hole, called a quasar, more than 12 billion light-years away.
"The environment around this quasar is very unique in that it's producing this huge mass of water," said Matt Bradford, a scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's another demonstration that water is pervasive throughout the universe, even at the very earliest times." Bradford leads one of the teams that made the discovery. His team's research is partially funded by NASA and appears in the Astrophysical Journal Letters.
A quasar is powered by an enormous black hole that steadily consumes a surrounding disk of gas and dust. As it eats, the quasar spews out huge amounts of energy. Both groups of astronomers studied a particular quasar called APM 08279+5255, which harbors a black hole 20 billion times more massive than the sun and produces as much energy as a thousand trillion suns.
Astronomers expected water vapor to be present even in the early, distant universe, but had not detected it this far away before. There's water vapor in the Milky Way, although the total amount is 4,000 times less than in the quasar, because most of the Milky Way’s water is frozen in ice.
Water vapor is an important trace gas that reveals the nature of the quasar. In this particular quasar, the water vapor is distributed around the black hole in a gaseous region spanning hundreds of light-years in size (a light-year is about six trillion miles). Its presence indicates that the quasar is bathing the gas in X-rays and infrared radiation, and that the gas is unusually warm and dense by astronomical standards. Although the gas is at a chilly minus 63 degrees Fahrenheit (minus 53 degrees Celsius) and is 300 trillion times less dense than Earth's atmosphere, it's still five times hotter and 10 to 100 times denser than what's typical in galaxies like the Milky Way.
Measurements of the water vapor and of other molecules, such as carbon monoxide, suggest there is enough gas to feed the black hole until it grows to about six times its size. Whether this will happen is not clear, the astronomers say, since some of the gas may end up condensing into stars or might be ejected from the quasar.
Bradford's team made their observations starting in 2008, using an instrument called "Z-Spec" at the California Institute of Technology’s Submillimeter Observatory, a 33-foot (10-meter) telescope near the summit of Mauna Kea in Hawaii. Follow-up observations were made with the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), an array of radio dishes in the Inyo Mountains of Southern California.
The second group, led by Dariusz Lis, senior research associate in physics at Caltech and deputy director of the Caltech Submillimeter Observatory, used the Plateau de Bure Interferometer in the French Alps to find water. In 2010, Lis's team serendipitously detected water in APM 8279+5255, observing one spectral signature. Bradford's team was able to get more information about the water, including its enormous mass, because they detected several spectral signatures of the water
Saturday, July 16, 2011
Most Distant Quasar Found
A team of European astronomers has used ESO’s Very Large Telescope and a host of other telescopes to discover and study the most distant quasar found to date. This brilliant beacon, powered by a black hole with a mass two billion times that of the Sun, is by far the brightest object yet discovered in the early Universe. The results will appear in the 30 June 2011 issue of the journal Nature.
“This quasar is a vital probe of the early Universe. It is a very rare object that will help us to understand how supermassive black holes grew a few hundred million years after the Big Bang,” says Stephen Warren, the study’s team leader.
Quasars are very bright, distant galaxies that are believed to be powered by supermassive black holes at their centres. Their brilliance makes them powerful beacons that may help to probe the era when the first stars and galaxies were forming. The newly discovered quasar is so far away that its light probes the last part of the reionisation era [1].
The quasar that has just been found, named ULAS J1120+0641 [2], is seen as it was only 770 million years after the Big Bang (redshift 7.1, [3]). It took 12.9 billion years for its light to reach us.
Although more distant objects have been confirmed (such as a gamma-ray burst at redshift 8.2, eso0917, and a galaxy at redshift 8.6, eso1041), the newly discovered quasar is hundreds of times brighter than these. Amongst objects bright enough to be studied in detail, this is the most distant by a large margin.
The next most-distant quasar is seen as it was 870 million years after the Big Bang (redshift 6.4). Similar objects further away cannot be found in visible-light surveys because their light, stretched by the expansion of the Universe, falls mostly in the infrared part of the spectrum by the time it gets to Earth. The European UKIRT Infrared Deep Sky Survey (UKIDSS) which uses the UK's dedicated infrared telescope [4] in Hawaii was designed to solve this problem. The team of astronomers hunted through millions of objects in the UKIDSS database to find those that could be the long-sought distant quasars, and eventually struck gold.
“It took us five years to find this object,” explains Bram Venemans, one of the authors of the study. “We were looking for a quasar with redshift higher than 6.5. Finding one that is this far away, at a redshift higher than 7, was an exciting surprise. By peering deep into the reionisation era, this quasar provides a unique opportunity to explore a 100-million-year window in the history of the cosmos that was previously out of reach.”
The distance to the quasar was determined from observations made with the FORS2 instrument on ESO’s Very Large Telescope (VLT) and instruments on the Gemini North Telescope [5]. Because the object is comparatively bright it is possible to take a spectrum of it (which involves splitting the light from the object into its component colours). This technique allowed the astronomers to find out quite a lot about the quasar.
These observations showed that the mass of the black hole at the centre of ULAS J1120+0641 is about two billion times that of the Sun. This very high mass is hard to explain so early on after the Big Bang. Current theories for the growth of supermassive black holes predict a slow build-up in mass as the compact object pulls in matter from its surroundings.
“We think there are only about 100 bright quasars with redshift higher than 7 over the whole sky,” concludes Daniel Mortlock, the leading author of the paper. “Finding this object required a painstaking search, but it was worth the effort to be able to unravel some of the mysteries of the early Universe.”
Notes
[1] About 300 000 years after the Big Bang, which occurred 13.7 billion years ago, the Universe had cooled down enough to allow electrons and protons to combine into neutral hydrogen (a gas without electric charge). This cool dark gas permeated the Universe until the first stars started forming about 100 to 150 million years later. Their intense ultraviolet radiation slowly split the hydrogen atoms back into protons and electrons, a process called reionisation, making the Universe more transparent to ultraviolet light. It is believe that this era occurred between about 150 million to 800 million years after the Big Bang.
[2] The object was found using data from the UKIDSS Large Area Survey, or ULAS. The numbers and prefix ‘J’ refer to the quasar’s position in the sky.
[3] Because light travels at a finite speed, astronomers look back in time as they look further away into the Universe. It took 12.9 billion years for the light from ULAS J1120+0641 to travel to telescopes on Earth so the quasar is seen as it was when the Universe was only 770 million years old. In those 12.9 billion years, the Universe expanded and the light from the object stretched as a result. The cosmological redshift, or simply redshift, is a measure of the total stretching the Universe underwent between the moment when the light was emitted and the time when it was received.
[4] UKIRT is the United Kingdom Infrared Telescope. It is owned by the UK’s Science and Technology Facilities Council and operated by the staff of the Joint Astronomy Centre in Hilo, Hawaii.
[5] FORS2 is the VLT’s FOcal Reducer and low dispersion Spectrograph. Other instruments used to split up the light of the object were the Gemini Multi-Object Spectrograph (GMOS) and the Gemini Near-Infrared Spectrograph (GNIRS). The Liverpool Telescope, the Isaac Newton Telescope and the UK Infrared Telescope (UKIRT) were also used to confirm survey measurements.
Sunday, May 22, 2011
NASA Telescope Helps Confirm Nature of Dark Energy
A five-year survey of 200,000 galaxies, stretching back seven billion years in cosmic time, has led to one of the best independent confirmations that dark energy is driving our universe apart at accelerating speeds. The survey used data from NASA's space-based Galaxy Evolution Explorer and the Anglo-Australian Telescope on Siding Spring Mountain in Australia.
The findings offer new support for the favored theory of how dark energy works -- as a constant force, uniformly affecting the universe and propelling its runaway expansion. They contradict an alternate theory, where gravity, not dark energy, is the force pushing space apart. According to this alternate theory, with which the new survey results are not consistent, Albert Einstein's concept of gravity is wrong, and gravity becomes repulsive instead of attractive when acting at great distances.
"The action of dark energy is as if you threw a ball up in the air, and it kept speeding upward into the sky faster and faster," said Chris Blake of the Swinburne University of Technology in Melbourne, Australia. Blake is lead author of two papers describing the results that appeared in recent issues of the Monthly Notices of the Royal Astronomical Society. "The results tell us that dark energy is a cosmological constant, as Einstein proposed. If gravity were the culprit, then we wouldn't be seeing these constant effects of dark energy throughout time."
Dark energy is thought to dominate our universe, making up about 74 percent of it. Dark matter, a slightly less mysterious substance, accounts for 22 percent. So-called normal matter, anything with atoms, or the stuff that makes up living creatures, planets and stars, is only approximately four percent of the cosmos.
The idea of dark energy was proposed during the previous decade, based on studies of distant exploding stars called supernovae. Supernovae emit constant, measurable light, making them so-called "standard candles," which allows calculation of their distance from Earth. Observations revealed dark energy was flinging the objects out at accelerating speeds.
Dark energy is in a tug-of-war contest with gravity. In the early universe, gravity took the lead, dominating dark energy. At about 8 billion years after the Big Bang, as space expanded and matter became diluted, gravitational attractions weakened and dark energy gained the upper hand. Billions of years from now, dark energy will be even more dominant. Astronomers predict our universe will be a cosmic wasteland, with galaxies spread apart so far that any intelligent beings living inside them wouldn't be able to see other galaxies.
The new survey provides two separate methods for independently checking the supernovae results. This is the first time astronomers performed these checks across the whole cosmic timespan dominated by dark energy. The team began by assembling the largest three-dimensional map of galaxies in the distant universe, spotted by the Galaxy Evolution Explorer. The ultraviolet-sensing telescope has scanned about three-quarters of the sky, observing hundreds of millions of galaxies.
"The Galaxy Evolution Explorer helped identify bright, young galaxies, which are ideal for this type of study," said Christopher Martin, principal investigator for the mission at the California Institute of Technology in Pasadena. "It provided the scaffolding for this enormous 3-D map."
The astronomers acquired detailed information about the light for each galaxy using the Anglo-Australian Telescope and studied the pattern of distance between them. Sound waves from the very early universe left imprints in the patterns of galaxies, causing pairs of galaxies to be separated by approximately 500 million light-years.
This "standard ruler" was used to determine the distance from the galaxy pairs to Earth -- the closer a galaxy pair is to us, the farther apart the galaxies will appear from each other on the sky. As with the supernovae studies, this distance data were combined with information about the speeds at which the pairs are moving away from us, revealing, yet again, the fabric of space is stretching apart faster and faster.
The team also used the galaxy map to study how clusters of galaxies grow over time like cities, eventually containing many thousands of galaxies. The clusters attract new galaxies through gravity, but dark energy tugs the clusters apart. It slows down the process, allowing scientists to measure dark energy's repulsive force.
"Observations by astronomers over the last 15 years have produced one of the most startling discoveries in physical science; the expansion of the universe, triggered by the Big Bang, is speeding up," said Jon Morse, astrophysics division director at NASA Headquarters in Washington. "Using entirely independent methods, data from the Galaxy Evolution Explorer have helped increase our confidence in the existence of dark energy."
Subscribe to:
Posts (Atom)